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Abstract

The Phenotype MicroArray technology of Biolog, Inc.
(Hayward, CA) measures the respiration of cells as a
function of time in thousands of microwells simultane-
ously, and thus provides a high-throughput means of
studying cellular phenotypes. The microwells contain
compounds involved in a number of biochemical path-
ways, as well as chemicals that test the sensitivity of cells
against antibiotics and stress. While the PM experimental
workflow is completely automated, statistical methods to
analyze and interpret the data are lagging behind. To take
full advantage of the technology, it is essential to develop
efficient analytical methods to quantify the information
in the complex datasets resulting from PM experiments.
We propose the use of statistical growth-curve models to
rigorously quantify observed differences in PM experi-
ments, in the context of the growth and metabolism of
Yersinia pestis cells grown under different physiological
conditions. The information from PM experiments com-
plement genomic and proteomic results and can be used
to identify gene function and in drug development. Suc-
cessful coupling of phenomics results with genomics and
proteomics will lead to an unprecedented ability to char-
acterize bacterial function at a systems biology level.

1 Phenotype microarrays

Bacterial phenotypes represent the cumulative function of
biochemical pathways. Previous means to test bacterial

phenotypes involved growing bacteria on specialized cul-
ture media on petri plates or in liquid broth cultures fol-
lowed by visual inspection. Consequently, previous phe-
notype studies could realistically examine the effects of
a few dozen chemicals at a time. The Phenotype Mi-
croArray (PM) technology (Biolog Inc, Hayward, CA)
revolutionized the field by introducing a high-throughput
method that can simultaneously test thousands of pheno-
types in an automated way [5, 7, 6, 23]. The PM system
consists of two-dimensional micro plates, each of which
contains 96 micro wells preloaded with separate chemi-
cals. Aliquots of the microbe are incubated in the wells,
and respiration is monitored automatically over time via
the OmniLog robot. If the organism can metabolize a
chemical, cells grow, indicating that the metabolic path-
way for that chemical is functional. The resulting kinetic
(growth curve) profiles are stored for subsequent analysis.
Differences in the growth curves observed under varying
physiological conditions, or from the growth of different
organisms, indicate biological differences.

The current PM platform for microbial cells con-
tains 20 micro plates, providing close to 2000 pheno-
type tests designed to cover known metabolic pathways.
Eight micro plates contain compounds related to the main
catabolic pathways for carbon, nitrogen, phosphorous and
sulphur, as well as biosynthetic pathways. One plate tests
osmotic stress factors and ion effects. Another investi-
gates pH growth range and pH regulation. Ten plates
test the sensitivity of cells to a number of chemicals such
as antibiotics, anti-metabolites, membrane-active agents,
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respiratory inhibitors, and toxic metals.
The OmniLog software included with the PM system

allows rudimentary comparison of kinetic plots [4]. For
each kinetic curve in an experiment, eight simple sum-
maries such as the area under the curve, the maximum
value, and the slope are calculated based on the raw data
points. Three additional summaries are also provided
based on the first-order derivatives.

Differences between growth curves in a well that cor-
respond to bacteria grown under varying conditions, or to
similar growth conditions of different strains, are evalu-
ated by comparing a given summary statistics from the
corresponding curves. If the difference between the sum-
mary statistics exceeds a user-selected threshold, a “sig-
nificant” difference between the conditions or strains is
declared. Replicate curves are averaged before the sum-
mary statistics are calculated. Comparisons are generally
based on differences in the total area under the curves.
Thresholds are manually selected, based on visual com-
parison of the data from all wells. While this methodol-
ogy represents an unprecedented global means to study
metabolic phenotypes, this analysis approach is time con-
suming and lacks statistical rigor.

To our knowledge, all PM results published to date re-
lied on the threshold-driven method described in the pre-
vious paragraph to assess differences in the cells under
investigation [13, 22, 21, 23, 2, 11, 14, 15]. In all cases,
great emphasis was placed on the materials and meth-
ods, and the discussion sections. However, details about
the analysis were scarce. Conclusions about phenotypic
changes were based on “changes that were consistent and
substantial” [7], on differences in the areas with undocu-
mented thresholds [23], and on over 60% difference be-
tween summary statistics (presumable area, but this was
not specified) [15]. In [22], the number of chemicals
where differences were observed was given without an
explanation of how they were determined.

Clearly, there is a gap between the advanced PM tech-
nology and our ability to make sense of the complex
datasets emerging from it. To assess whether observed
differences in the growth of cells on PM plates are sta-
tistically significant, a more rigorous approach is needed.
We propose using statistical growth-curve models in Sec-
tion 2, describe our preliminary results with the proposed
methods in Section 3, and summarize in Section 4.

2 Proposed methods

Our solution seeks to improve the subjective methods cur-
rently used in the analysis of PM experiments. The ap-
proach is to develop an objective statistical growth-curve
modeling framework [3, 20] and quantify automatically
the significance of the results in a traditional hypothesis-
testing context. The statistical methods will incorporate
the information from the replicate curves and will attach
a measure of significance to the results.

Data from published PM experiments, as well as our
ongoing experiments, provide strong evidence that para-
metric models can be used to model the kinetic curves.
Our initial results focus on the asymptotic regression (AR)
and the four-parameter logistic (4PL) models, as these
models fit most of the observations in our experiments.
Figure 1 displays the two models.

The mathematical form of the AR model is given by

yAR(x) = Φ1 + (Φ2 − Φ1)exp[−exp(Φ3)x], (1)

where yAR(x) is the growth at time x, Φ1 is the asymptote
(Asym), Φ2 is the response at time 0 (resp0), and Φ3 is
the log rate constant (lrc), as illustrated in Figure 1(a).
The time to reach half the maximum is the half-life, and
is expressed as

t0.5 = log(2)/exp(Φ3). (2)

The 4PL model in Figure 1(b) is described by

y4PL(x) = Φ2 +
Φ1 − Φ2

1 + exp[(Φ3 − x)/Φ4]
, (3)

where where y4PL(x) is the growth at time x, Φ1 is the
lower asymptote (A), Φ2 is the upper asymptote (B), Φ3 is
the midpoint between the asymptotes (xmid), and Φ4 is a
scale parameter such that when x = Φ3+Φ4, the response
is Φ2 + (Φ1 − Φ2)/(1 + e−1) or about three-quarters of
the distance from Φ2 to Φ1.

These parameterizations follow [18] and ensure the sta-
bility of the nonlinear fitting algorithms. Alternative pa-
rameterizations are also possible.

Given data from one well and a specific model, we esti-
mate the corresponding model parameters and their uncer-
tainties using nonlinear optimization algorithms [20, 19,
18]. Next, we construct confidence intervals for the dif-
ferences in the parameter estimates that correspond to the
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(a)

(b)

Figure 1: The (a) asymptotic regression and (b) four-
parameter logistic models.

different conditions, and use hypothesis testing to assess
whether the observed differences are statistically signifi-
cant, at the desired significance level specified by the user.

3 Preliminary results

Yersinia pestis, the causative agent of plague, is a highly
communicable bacterium that has been responsible for
three historic pandemics with high mortality rates [17, 1].
In a recent pneumonic plague outbreak in the Republic of
Congo, 57 of 130 patients had died as of March 30, 2005.

Figure 2: Phenotype of Y. pestis KIM5 D27 on the PM1
carbon source plate. Kinetic curves are shown in 96 wells
under four physiologically relevant conditions: conditions
mimicking the flea midgut (green), the mammalian host
plasma (yellow), the mammalian intracellular (red), and
an environmental control (blue). Three replicates per con-
dition are plotted. The x-axis measures time in hours
(288 time points for each replicate curve corresponding to
measurements taken every fifteen minutes for three days),
while the y-axis quantifies the growth in units of Om-
niLog signal intensity. The negative control values shown
in the first well have been subtracted from each replicate.

Y. pestis virulence factors and a Type III secretion deliv-
ery system are induced thermally, when the bacterium en-
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ters the mammalian host from the flea vector, and through
host cell contact [9, 10]. To understand how growth con-
ditions influence the virulence mechanism of the bacteria,
we conducted a high-throughput experiment with PMs.
Y. pestis was grown on 20 micro plates. We tested the
cells under four biologically relevant growth conditions
related to the flea vector and the mammalian host, and
measured growth every fifteen minutes for three days.
The calcium concentration and the temperature used rep-
resent the flea midgut (26°C, 4 mM Ca2+), mammalian
host plasma (37°C, 4 mM Ca2+), and host intracellular
(37°C, 0 mM Ca2+) physiological conditions. An addi-
tional environmental control (26°C, 0 mM Ca2+), was
also tested. Three replicates were run under each of the
four conditions. Figure 2 displays the data from the PM1
carbon source plate.

Figure 3 displays the results of fitting the two proposed
models to two wells from the experiment. The first row
illustrates an example with the AR model in Eq. (1). The
replicate curves are shown with the color that corresponds
to growth conditions, as shown in Figure 2. The black
lines indicate the model fits for the four growth condi-
tions, based on information from all the replicate curves.
The second image in the first row presents the three pa-
rameter estimates (Asym, resp0, and lrc from Eq. (1) in
the three columns, respectively) for the AR models fitted
to the data collected under the four physiological growth
conditions (shown in green, blue, yellow, and red). The
intervals are the estimated 95% confidence intervals for
the corresponding parameters. The results for the log rate
constant (lrc) in the third column indicate that the cells
grow significantly faster under the mammalian host in-
tracellular (red) and mammalian plasma (yellow) condi-
tions than under either the flea midgut (green) or control
(blue) conditions. The corresponding half-life estimates
of Eq. (2) are: 3.68 (red), 3.61 (yellow), 11.89 (green),
and 19.36 (blue) hours.

The second row of Figure 3 presents an example re-
sult with the 4PL model in Eq. (3). The model is not
adequate to describe the growth under the mammalian
intracellular (red) condition, illustrating one of the chal-
lenges in automating the analysis. The second column
presents the 95% confidence intervals for the four pa-
rameters in Eq. (3) for the three growth conditions where
the model was appropriate. The flea midgut (green) and
control (blue) conditions resulted in significantly larger

asymptotes (B) and midpoints (xmid) than the mam-
malian plasma (yellow) condition.

4 Summary

We described the current state of the art in the analysis of
phenotype microarrays, and demonstrated that more rig-
orous statistical methods can be used to realize the full
potential of the technology. We suggested that statistical
growth-curve modeling set in a hypothesis testing frame-
work has the potential to add rigor to the interpretation
of the phenotype array experiments. We presented pre-
liminary results from a microbial experiment and demon-
strated the applicability of the proposed methods.

Future plans include incorporating alternative models,
model selection, improved hypothesis testing based on
differences in the parameter estimates, as well as develop-
ing novel clustering algorithms to group the wells based
on their growth curve profiles under the conditions of in-
terest. Chemicals that cluster together are likely related
or address a specific biochemical pathway, which will be
helpful in the biological interpretation of the data. In addi-
tion to investigating traditional clustering methods based
on the entire growth curves, we propose to develop more
efficient algorithms based on the estimated growth curve
models and parameter estimates.

Implementation of the proposed framework to the auto-
mated analysis of arbitrary phenotype array experiments
will result in improved analysis of high-throughput phe-
notype experiments. This is the first step in an ambitious
vision for a future bioinformatics platform for integrat-
ing results from from cross-technology applications. Ide-
ally, improved results from phenotypic profiling exper-
iments will be combined with findings using the more
mature gene expression [16] and protein expression plat-
forms [8, 12] in order to gain a better understanding of an
organism at a systems biology level. In light of the imper-
fect technologies and unavoidable uncertainties, statisti-
cal methods are vital for a rigorous analysis of the data.
Once proper statistical methods are in place to quantify
the results of all the technologies involved, the informa-
tion fusion can proceed. In turn, the combined results will
facilitate greater mechanistic understanding of microbes,
and contribute to the rapid detection and therapeutic inter-
vention of infectious and emerging diseases.
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Figure 3: Selected results with the two parametric models. Top row: D-Ribose from the C04 position of the PM01
carbon sources plate. Bottom row: 2% Sodium Sulfate from the D05 position of the PM09 osmotic stress factors
plate. First column: the replicates over the four physiological conditions (in color) and the model estimates (in black).
The D-Ribose data was fit with the asymptotic regression model, while the Sodium Sulfate data with fit with the four-
parameter logistic model. Second column: the 95% confidence intervals for the corresponding model parameters.
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